Let’s get some data:

library(tidyverse)
library(tidycensus)
library(scales)
library(hdatools)
library(ggtext)

rva_inc <- get_acs(
  geography = "county",
  state = "Virginia",
  county = c("Richmond city", "Chesterfield County", "Henrico County"),
  variables = "B19013_001",
  year = 2021
) |> 
  mutate(NAME = str_remove(NAME, ", Virginia"))

Now, let’s build an HDAdvisors-branded plot:

ggplot(rva_inc, aes(x = estimate, y = reorder(NAME, estimate), fill = NAME)) +
  geom_col() +
  scale_fill_hda() +
  scale_x_continuous(labels = label_dollar()) +
  theme_hda() +
  flip_gridlines() +
  labs(
    title = "Median household income",
    subtitle = "Richmond-area localities",
    caption = "**Source:** American Community Survey, 2017-2021 5-year estimates.<br>**Note:** Incomes adjusted to 2021 dollars."
  )

Next, we’ll build a HousingForward Virginia-branded plot:

ggplot(rva_inc, aes(x = estimate, y = reorder(NAME, estimate), fill = NAME)) +
  geom_col() +
  scale_fill_hfv() +
  scale_x_continuous(labels = label_dollar()) +
  theme_hfv() +
  flip_gridlines() +
  labs(
    title = "Median household income",
    subtitle = "Richmond-area localities",
    caption = "**Source:** American Community Survey, 2017-2021 5-year estimates.<br>**Note:** Incomes adjusted to 2021 dollars."
  )